SANDFORD FLEMING FORUM

Resilience of Commercial Property to Climate Change

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE & ENGINEERING

Introductions

Steven Horwood Vice President, Sales & Operations Neelands Refrigeration Steven.horwood@neelands.com

Mark Hanson Project Manager, Commercial & Industrial Neelands Refrigeration <u>mark@neelands.com</u>

Refrigeration & Cooling Choices

A CO₂ Perspective

ENGINEERED FOR PERFORMANCE

How can one's **ChOiCES** – our choices - around **refrigeration** and **COOling** technology in commercial facilities, affect **POSitive results** for the sustainability of our planet, our business, our local and global communities, and planning for resilience?

Decisions you make now with regards to refrigeration and cooling may not only **improve the facility resilience**, but also contribute to the stemming of global warming and extreme weather.

Our goal in this brief overview twofold;

To raise your awareness and create curiosity about those facility refrigeration and cooling decisions that probably get made and how those decisions of today may play a role in sustainability and resilience.

Elements Required For Making Informed Decisions Involving Emerging Technologies

- Planning/ development
- Engineering

Culture

Innovation?

Supportive

Engaged

Entrepreneurial?

No credit in Team

Behavior

What vs. Who?

•

•

•

•

•

Procurement

Knowledge

- Product awareness
- Product effectiveness
- Commercial feasibility

- Product awareness
- Product effectiveness
- Commercial feasibility

So..... What About Carbon Dioxide

- Technology that originally emerged in the mid-19th century
- 1850 : First CO₂ refrigeration patent by Alexander Twining (England)
- 1890 : CO₂ is seen as the only "safe" refrigerant
- Golden age from 1920 to 1930 with system up to 350T, to be phased out in favor of synthetic refrigerants (R-12)

In the latter part of the 20th century, scientists began to understand the relationship between synthetic refrigerant usage and the impact to the ozone layer and global warming.

With the signing of the Montreal Protocol, the world's developed economies focused on restrictions and a planned course of action towards elimination of the **Ozone Depletion** (ODP) CFC and HCFC synthetics

- As a result, CO₂ resurfaced in the 1990s
- 1991 : "Transcritical" patent by Gustav Lorentzen (Norway)
- 2009 : First appearance of CO₂ systems in grocery stores in Americas
- 2010 : First CO₂/NH₃ cascade system for distribution centers in Canada (Carnot)
- 2010 : First Ice rink with (in slab) recirculated CO₂ system in North America

- 2012 : First Ice rink with direct heat recovery CO₂ system in North America (Carnot)
- >2013: Transfer of technology to other refrigeration applications
- 2013 : First Data center to run a CO₂ cooling unit (Carnot AQUILON [™] unit)
- Reliable and proven systems
 - Presence in Europe for over 20 years
 - Presence in Canada and United States for ten years

Basics of CO₂

- Toxicity is very low
- Non flammable
- ODP = 0
- GWP = 1 (407c-1600; 410A-1725; 134a-1430)
- High refrigeration volumetric capacity

Basics of CO₂

- High convective heat transfer coefficient
- Low critical points
- Higher operating pressure
- Higher discharge temperatures

Technologies Unique to CO₂ High Grade Heat Recovery

CO2 refrigeration systems have generally higher working pressures than traditional synthetic, but this is safely engineered at reasonable costs.

A benefit of these higher pressures is that it produces heat.

This heat can then be easily captured to pre-heat your hot water requirements or for other building purposes such as dehumidification.

For example, a typical chiller design which required 100 TR can yield up to 2.2M btu's of heat recovery for hot water supply.

New Patented Technologies

"Free cooling" Mode

- Outstanding free cooling capabilities
- Free cooling enabled to within 4-5 C of refrigeration/ cooling set point
- Typical data room can see free cooling enabled as high as 18 C
- Typical distribution centre along 41st parallel can see over 4,000 hours annually of free cooling
- All compressors stopped and no need for pumped refrigeration
- Fewer points of failure and very low power consumption per TR.

Can These CO₂ Properties Assist Resilience?

Heat Reclaim

- Supply of essential services during gas supply disruption
- Heating
- Dehumidification
- Domestic hot water
- Sterilization/ wash down
- Food services
- Any other heating application

Free Cooling

- Possible supply of all air conditioning needs with minimal power requirement
- Fewer points of failure
- No moving parts
- Ability to re direct power to other services

Can These CO₂ Properties Assist Resilience?

H,S & E

- Non corrosive
- Non flammable
- Site and emergency services far less impacted with CO2 especially versus ammonia
- Leak of CO2 to atmosphere has no impact to planet or community
- No need for community evacuation plans

Demonstration of Versatility & Feasibility

"I call my invention 'The Wheel,' but so far I've been unable to attract any venture capital."

Distribution Centers and Supermarkets

NH₃ / CO₂ Hybrid Refrigeration System

Supermarkets & Multi Zone Cooling

REFRIGERATION LIMITED

» Benefits

Divides by 3 900 the GHG emissions compared to R22

Refrigerates food and keeps its freshness for a long period of time which helps reducing product loss

Recovers the heat generated by the compressors, which becomes a free energy able to warm up the store's potable water and ambient air

» Awards

 Best of the Best, GreenChill Awards, US Protection Environmental Agency

Certification, EPA GreenChill platine

"Cleantech Next10" 2012 Award, Corporate Knights

Carnot's solution

	QTY	kBtu /h	
Compressors	12	1289	
HEAT RECO	VERY SYSTEM	4	
Total heat recovery	1913	k8tu/h	
Two stages sales area	540	kBcu/h	
Vestibule and cash register	460	kBtu/h	
Receiving Dock	265	kBtu/h	
Right and left Warehouses	530	kBtu/h	
Domestic water	120 kBtu/h		

Carnot's coordination In order to provide a continuous service to the customers, the start-up of the CO₂ refrigeration system has been spread over 16 phases.

"Excellent service, great staff attitude, professional"

André Perreault Director

After the start-up of the CO2 refrigeration system, we noticed a 22% reduction in energy consumption of the refrigeration process. This equals to a reduction of 11% of the energy consumption of the entire building. It should also be noted that we brought improvements to the system in March 2013, and that these improvements have increased the efficiency of the system.

Municipal Multi Purpose Case Study

Original HCFC System

- × 18 Compressors, 25hp
- × 9 Air Cooled Condensers
- 🗴 4 Brine Pumps, 38 kW
- 🗙 Heat Recovery, 50 kW

Retrofitted Carnot CO2 System

- 4,700,000 kWh reduction
- Power Peak reduced by 700 Kw
- Heat Recovery of 880 kW
- 81% reduction in heating expense
- \$257,000 / year energy reduction

» Benefits

Customized solution tailored to any client needs

Reduction of 4,700,000 kWh (33.4%) after 1 year Space usage reduction of 60%

- No water tower required (no risk of legionellosis)
 10% reduction in maintenance costs compared to a traditional system
- Divide by 1 800 the GHG emissions compared to R22

» Awards

- Energia Award 2013, AQME
 Award of Excellence, Innovation and Development.
- 2013 AQLM

 Recognized as
 the most efficient
- and least expensive system, 2013 CanmetENERGY, Natural Resources
- Canada
- Over 200 visits

Carnot's solution

	QTY	(kW)	
Compressors	18	724	
Brine pumps	3	11.25	
Heating Pump	1	3.75	
Heat exchanger	4	274	
Heat recovery	8	880	
Gas cooler	2	1160	
Refrigerant CO2	5456 lb		

Carnot's innovation

- 1st sports center with direct CO2 recovery
- 1st arena using CO2 in the process of dehumidification

" The City of Dollard-des Ormeaux has shown some leadership by innovating and promoting new technologies such as CO2, in order to make our mechanical equipment more efficient "

Guy Dubé, Division Chief, Building services City of Dollard-des-Ormeaux

Energy figures

- Reduction of 4,700,000 kWh (33.4%) after 1 year
 Savings for the municipality of 257,000
- dollars per year 81% reduction in heating expenses compared to a
- traditional system
 Payback period of 3.9 years (including grants)
- Reduction in power peaks of 700 kilowatts

Monthly energy consumption (kWh)

Refrigeration limite

Cold Storage - Cranberry Facility

Warehouse

• Volume

• Products

• Area

efrigeration limited

- Height
- Loading dock
- Cranberry 544 310 kg 4 180 sq. m 12 m
- (45 000 sq. ft.) (40 ft) 4 doors
- System
 - Refrigerant
 - Capacity
 - Temperature
 - Refrigerant charge
 - Heat recovery
 - Defrost

 (CO_2) R744 only (183 TR) 644 kW (0°F) - 18°C (3 300 lbs) 1 500 kg Sub-floor Hot gas

(1 200 000 lbs)

CO2 Transcritical Refrigeration System

- Benefits
 - No HFCs
 - No NH₃
 - Non-toxic refrigerant
 - Reduced H&S costs and risks
 - No cooling tower : Eliminate water consumption and chemical treatment
 - Reduces piping and insulation sizes by 50%
 - Full heat recovery for building
 - Free cooling mode (thermosyphon)

Data/ Communication/ Critical Cooling

Benoit Sicotte, Senior Manager, Corporate Responsibility, Bell :

"Bell is currently working with Carnot, a Pioneer in the development of Bei CO2 refrigeration technologies on an innovative solution that have not yet been introduced in any data center in Canada and have the potential to reduce significantly Bell's environmental footprint."

From concept to exceeding performance criteria.

- Planning/ development
- Engineering
- Procurement

Integration of The Business Solution

ASSESSING CARBON DIOXIDE AS A SOLUTION

ROI Threshold:Years	Level of Importance To You				
	Not at all	>>>>> Very		Very	
	1	2	3	4	
Lowest Initial Cost					
ROI Threshold					
Technology Peace of mind					
Support and Ongoing Service					
Engineering Issues					
Health & Safety Risk Reduction					
Elimination of HFC's/ HCFC					
Public Perception/Marketing					

cos provides owners with a solution that is Flexible Reliable Cost Effective Safeand Environmentally Responsible!

Thank you

