SANDFORD FLEMING FORUM

Structural Resilience - How Building Systems Improve Operational Resilience

cro

SUSTAINABLE.TO ARCHITECTURE + BUILDING

in the second second second second

Community Sustainability + Resilience = Economic Opportunity

1

"An Ounce of Prevention is Worth a Pound of Cure"

Paul Dowsett | Principal Architect

CRCI Sandford Fleming Forum

October 13, 2016

PASSIVE HOUSE PRINCIPLES

SUSTAINABLE.TO Ethos

STAYING AHEAD OF THE ENERGY CURVE

2009: DANIELS RESIDENCE

Actual Performance: 36% Energy Savings EUI = 171 kWh/m²a

ENERGY SAVINGS

2009: HUNTER HOUSE

Actual Performance: 56% Energy Savings EUI = 123 kWh/m²a PV Capacity: 2.8 kW Air-tightness: 3.7 ACH₅₀

ENERGY SAVINGS

2013: QUEEN VICTORIA

Actual Performance: 37% Energy Savings $EUI = 176 \text{ kWh/m}^2 \text{a}$ PV Capacity: 5 kW Air-tightness: 5.5 ACH₅₀ ENERGY SAVINGS

2013: RESILIENT HOUSE

WOB * R 7000

ERGY SAVIN

2013: LANEWAY HOUSE

Actual Performance: 50% Energy Savings $EUI = 139 \text{ kWh/m}^2 \text{a}$

Air-tightness: 2.5 ACH₅₀

2016: RISEBROUGH RESIDENCE

Projected Performance: 80% Energy Savings EUI = 56 kWh/m²a Heating Load = 15.6 W/m² Air-tightness: 1.7 ACH₅₀

ENERGY SAVINGS

2016: CARLAW

Projected Performance: 83% Energy Savings EUI = 50 kWh/m²a

Air-tightness: 1.5 ACH₅₀

ENERGY SAVINGS

2018: CHURCHILL AVENUE

THE TORONTO METHOD

WHY ROCK WOOL?

- Health
- Hygrothermal performance
- Recycled content
- Durability
- Fire
- Acoustics

We want walls that can DRY to both sides

PROTECTED INTERNAL STRUCTURE

PROTECTED INTERNAL STRUCTURE ONE CONTINUOUS MEMBRANE

[air, weather, vapour]

CODE-MINIMUM vs. METHOD.TO

Code-Minimum Wall

Nominal R-value:	R-24
Effective R-value:	R-18.7

Toronto Method Wall

Nominal R-value:	R-24
Effective R-value:	R-24

Wood Frame Construction

SIGA tape on sheathing – continuous air barrier, OSB vapour control

Weather and air sealing at window buck extension

SUSTAINABLE.TO ARCHITECTURE + BUILDING

Photos courtesy of SUSTAINABLE.TO

Long 12" TruFast SIP screws fastened through furring and insulation to stud wall

Photos courtesy of SUSTAINABLE.TO

Layering insulation, 3" lapped seams

Wood Furring for Siding

Ready to Test!

Photos courtesy of SUSTAINABLE.TO

CASE STUDY: RISEBROUGH RESIDENCE

- Variation on METHOD.TO
- No Polyethylene Vapour Barrier Approved by City!
- Single, semi-permeable air/weather/vapour control membrane

CASE STUDY: RISEBROUGH RESIDENCE

CASE STUDY: RISEBROUGH RESIDENCE

Projected Performance: 80% Energy Savings $EUI_{h/c} = 23.2 \text{ kWh/m}^2a$ Heating Load = 15.6 W/m²

Pre-drywall Air-tightness: 1.7 ACH₅₀

ENERGY SAVINGS

COST

SUSTAINABLE.TO ARCHITECTURE + BUILDING

COST VS. ENERGY SAVINGS

CONSTRUCTION COST INCREASE

RESILIENT NEIGHBOURHOODS

FAR ROCKAWAY, NY

GREEN ROOF & SOLAR PANELS

Reducing energy demand by building well insulated, passive buildings is first priority. The remaining (relatively small) energy demand may then be accommodated by on-site renewables. This is environmentally beneficial and provides energyindependence when weather events impact the grid.

> 500 YEAR FLOOD LINE

ELEVATED GRADE

Grade up to in-filled streets allows 80% of the site to remain unaltered, while allowing all buildings streetfront access to their ground floors.

RENEWABLE ENERGY

Onsite power generation in the form of micro turbines and photo-voltaic panels on buildings and streetlight fixtures will provide the community with renewable energy and add redundancy to the existing energy grid.

PUBLIC TRANSIT

New bus routes, the restoration of Old Rockaway Railroad Line and daily express ferry services will add redundancy to the existing public transportation network, decrease commute times and decrease congestion on the existing A-line subway.

500 YEAR FLOOD LINE

ARVERN PARK Beach 35th & 36th St.

COMMUNITY GARDENS

Local residents and The Food Retail Expansion to Support Health program (FRESH) is provided with 1.5 acres of land for urban agriculture to promote healthy eating and support a community that currently is undersupplied by grocery stores and supermarkets.

RETAIL & COMMERCIAL

In the aftermath of Hurricane Sandy 90% of all shops were forced to close temporarily which lead to the phenomenon of retail leakage. All new retail is located along raised streets eliminating the risk of flood damage. All retail streets front on boardwalks adjacent to the beach or Arvern Park.

FLEXIBLE RETAIL & PARKING in the form oto-voltaic streetlight activate the street level and provide

Activate the street level and provide flexible retail opportunities for small vendors and farmers markets. Parking under and beside the trestle serves businesses along Rockaway Beach Blvd. and park-and-go for subway commuters.

FAR ROCKAWAY, NY

FAR ROCKAWAY, NY

PASSIVE HOUSE

Buildings with minimal energy demand (well insulated, naturally ventilated, passively heated) benefit the environment and remain liveable even when weather events effect the power grid. **4** LANEWAY CHANNELS

In the event of failure in the first three storm surge mitigation strategies the final strategy allows flooding to occur with minimal disruption. Laneways serve as canals to guide and concentrate flood waters away from residents until the storm passes. This allows every building to have a front door that will always be above water while only filling 20% of the site.

> 500 YEAR FLOOD LINE

MIXED-USE STREETS

All streets accommodate motor vehicle, bicycle, and pedestrian traffic to varying degrees. Quiet residential streets on the interior of the site prioritize bicycle and pedestrian traffic, since residents park in rear laneways.

INFRASTRUCTURE

Utilities have been buried to accommodate community requests and ensure resiliency and stability with power and communications infrastructure.

THANK YOU!