

SYSTEMATIC RISK MANAGEMENT **APPROACH FOR BUILDINGS**

Presented by: Ahmed A. Youssef, PhD

Supervised by: David N. Bristow, PhD

Civil Engineering

The Cities & Infrastructure Systems Lab for Resilience & Sustainability

Outline

BIM: Building Information Modeling

BIM: Norms and Benefits

Current Practices: Challenges

Current Practices: Challenges

8

Current Practices: BIM Now

Risk and BIM: Better Understanding

BIM and Risk: Objectives

Methodology: RiskLogik Framework

Methodology Overview: RiskLogik Framework

Methodology Overview: BIM and RiskLogik Integration

Methodology Overview: Value Added

Case Study: Grade Risk Profile

Conclusion and Future Work

Problem

- Backlogs of aging buildings.
- Changing hazards.
- Increasing risks and demands.
- Complexity of buildings.

Solution

- Integrated risk assessment practices.
- Integrated design provides a path forward.
- Scaling BIM with surrounding infrastructure.
- Improved data collection.

Thank You

Ahmed A. Youssef, PhD Project Lead Engineer and Postdoctoral Fellow Email: aatef@uvic.ca

Civil Engineering

The Cities & Infrastructure Systems Lab for Resilience & Sustainability

Backup Slides

Condition Assessment: Building Inspection

Methodology Overview: BIM and RiskLogik Integration

Workflow: RiskLogik and BIM

Data Collection

• Scanning and image processing

CAD Drawings

Building Modeling

Revit Models

Risk Assessment

- Operational
- Structural

Interdependency Analysis: Revit API

Interdependency Analysis: Revit Workflow

Interdependency Analysis: RiskLogik Workflow

Case Study: Almonte Power Plant

Testbed for development

Constructed using point cloud images and blue prints

Interdependencies are extracted to RiskLogik

Risk Scenario: Flood the basement

Results imported back to Revit for Visualization

Case Study: Inputs

Case Study: Analysis Steps

Case Study: Cumulative Risk profile

Normal Operation

Flood Hazard

Case Study - 2: Inputs

Case Study - 2: Analysis Steps

Service – Condition Matrix: MEP System

	MEP element					
Condition	Remaining Service Life	Expected Service Level	MASL	Likelihood of Failure		
1	1000 hours	Up to 5 hours	Up to 3 hours	1		
2	700 hours	Up to 3 hours		3		
3	500 hours	Up to 2 hours		6		
4	300 hours	Up to 1 hours		7		
5	Less than 100 hours	Up to 15 min		10		

Service – Condition Matrix: Arch. & Struct. Systems

	Architecture and structural elements					
Condition	Remaining Service life	Expected Service Level from FEA	MASL	Likelihood of Failure		
1	50 years	Up to 30 hours	Up to 15 hours	1		
2	30 years	Up to 25 hours		3		
3	20 years	Up to 15 hours		6		
4	10 years	Up to 6 hours		7		
5	Less than 5 years	Less than 2 hours		10		